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DIFFERENTIAL EQUATIONS OF MOTION FOR COMBINED FLAPWISE BENDING, CHORDWISE
BENDING, AND TORSION OF TWISTED NONUNIFORM ROTOR BLADES !

By Jomn C. Housort and Groree W. Brooks

SUMMARY

The differential equations of motion for the lateral and tor-
stonal deformations of twisted rotating beams are developed for
application to helicopter rotor and propeller blades. No
assumption i8 made regarding the coincidence of the neutral,
elastio, and mass azes, and the generality 18 such that previous
theories involving various simplifications are contained as
subcases to the theory presented in this paper.

Special attention is given the terms which are not included in
previous theories. These terms are largely coupling-type terms
associated with the cendrifugal forces. Methods of solution of
the equations of motion are indicated by selected examples.

INTRODUCTION

This paper deals with the deformation theory of rotating
blades. The structural problems of these blades have
become more acute in almost every phase of aeronautical-
engineering application: For example, propellers have
become larger and thinner, particularly in connection with
aircraft designed for vertical take-off and landing and short
take-off and landing, and as a consequence are more suscep-
tible to vibration and flutter troubles; helicopter blades are
subject to numerous vibration, divergence, and flutter
problems; and turbine and compressor blades fail frequently
because of some vibration phenomena. There is therefore
much interest in the development of & more general deforma-
tion theory which is fundamental in the structural and
dynamic analysis of these problems.

Although many theories on blade deformation exist, these
theories either neglect some of the factors of concern or treat
them only approximately. The factors are many and
include variable stiffness and mass distributions, noncoin-
cidence of the elastic and mass axes, built-in twist, coupling
brought about by inertia and centrifugal forces, and so forth.
In order to give a rough perspective of the scope of available
theory, figure 1 has been prepared. The nonrotating-beam
cases have also been included in figure 1 (a). The first two
cases refer to uncoupled bending and uncoupled torsion' of
beams without twist, and much work on these cases has
been done; their treatment is in fact classical. The third
case is that of coupled bending in two directions and torsion
of a twisted beam, wherein the elastic and mass axes are
noncoincident (see ref. 1); the subcase where no twist is

! Bupersedes NACA Technieal Note 3935 by John C. Houbolt and George W. Brooks, 1957

present has also been given extensive treatment. Additional
treatments on general theory of pretwisted beams are also
given in references 2 to 4.

The rotating-beam cases which have been treated with
the inclusion of centrifugal forces are shown in figure 1 (b).
The first case, that of pure flapwise bending of an untwisted
beam, has been considered by several investigators; reference
5 is a notable example in which beams of variable cross
section and different root-end suspensions are analyzed from
a design-application standpoint in considerable detail.
References 6 to 8 also give substantial treatments to this
case. Pure torsion of untwisted rotating beams is treated
in references 9 and 10, and combined bending in two direc-
tions is treated by various means which include both vector
and matrix methods in references 11 to 16.

The case treated in the present paper is shown in figure 2;
this case represents the coupled bending in two directions
and torsion of a twisted rotating beam where the elastic
axis, mass axis, and tensiop axis are not necessarily co-
incident. The tension axis is defined as the spanwise locus
of the centroids of the cross-sectional ares effective in carry-
ing tension. The specific purpose of the paper is to develop
the differential equation of deformation of the blade under

! ~ ~+~
b
(a) Nonrotating beams.

(b) Rotating beams. ‘
Fraure 1.—Cases treated in previous theory.
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Figure 2.—Present theory. Case of coupled bending-torsion of
twisted rotating beam.

the action of various applied loads. The development is
made along the principles of ‘“engineering’” beam theory,
and secondary effects, such as deformation due to shear, are
not included. The theory is therefore intended primarily
for blades of moderate to high aspect ratios, for which plate
bending effects are probably not significant. Special sub-
cases which involve simplifications that appear justified in,
the treatment of certain problems (for example, helicopter
blade deformation) are then deduced. Finally, methods of
solving the equations are discussed, and examples are given.

SYMBOLS

A cross-sectional area of blade effective in carry-
ing axial tension

B, B, section constants, see equations (9)

ds incremental distance measured along beam
fiber in undeformed state

ds; incremental distance measured along beam
fiber in deformed state _

E Young’s modulus of elasticity

e distance between mass and elastic axis, positive
when mass axis lies ahead of elastic center

€a distance between area centroid of tensile
member and elastic axis, pesitive for centroid
forward -

o distance at root between elastic axis and axis-
about which blade is rotating, positive when
elastic axis lies ahead

G shear modulus of elasticity

I, I, bending moments of inertia about major and
minor neutral axes, respectively (both pass
through centroid of cross-sectional area
effective In carrying tensions)

J torsional stiffness constant

ka polar radius of gyration of cross-sectional area
effective in carrying tensile stresses about
elastic axis
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kn polar radius of gyration of cross-sectional
: mass about elastic axis (kn*=rkm?+kns®)
mass radii of gyration about major neutral
axis and about an axis perpendicular to
chord through the elastic axis, respectively
L, intensity per unit length of laterally applied
aerodynamic logd in plane of rotation
L, intensity per unit length of applied aero-
dynamic loading perpendiculer to plane of
rotation
M intensity per unit length of applied aero-
dynamic torque loading
resultant cross-sectional moment about major
principal axis
resultant cross-sectional moment about axis
perpendicular to major principal axis and
passing through elastic axis
resultant moments in z-, -, and z-directions,
respectively, of M, M3, and @ moments
m mass of beam per unit length

kml; km?.

M,

M,

M:n Mﬂ Mz

Pz Py, P. Tesultant or total loadings per unit length in
z-, -, and z-directions

Q resultant cross-sectional torque about elestic
‘axis

q - torque loading per unit length

0> Oy resultant torque loadings per unit length in x-,
-, and z-directions

R blade radius .

T tension in beam, Tgf ma dz

t thickness of cross section at any chordwise
position

V,, Vi cross-sectional shears in ¢- and z-directions

v, W lateral displacements of beam, in plane of rota-
tion and normal to plane, respectively

z, Y, 2 coordinate system which rotates with blade
such that z-axis falls along initial or unde-
formed position of.elastic axis (see figs. 2
and 3) ’

B blade angle of station z prior to any deforma-

tion, positive when leading edge is upward
€ strain

er strain due to tension, %

$m cross-sectional coordinates; n-axis lies along
major axis, {-axis is perpendicular to major
axis and passes through elastic axis (sce

fig. 3)
values of 7 for trailing edge and leading edge of

Neey TNie
cross section

p mass density

T stress

é angle of twisting deformation, positive when
leading edge is upward

Q angular velocity of rotation

w frequency of vibration, radians/sec

Primes denote derivatives with respect to z; dots denote
derivatives with respect to time.
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ANALYSIS
GENERAL PROCEDURE

As noted from figure 2, the beam is considered as though
it were a rotating helicopter blade with rotation counter-
clockwise when viewed from above. The z-axis of the z, y, 2
coordinate axes system shown lies outward along the blade and
is coincident with the undeformed position of the elastic axis.
This set of axes moves with the blade around the axis of
rotation at the given rotational velocity €, and all deforma-
tions of the blade are referred to this coordinate system. The
blade is considered under the action of distributed aerody-
namic loadings in the y- and z-directions and under a dis-
tributed torque loading about the elastic axis, where the
intensities per unit length are denoted by L,, L, and M,
respectively. The tension in the beam is denoted by 7.

Tigures 3 (a) and (b) show the coordinate system used for
the blade cross section and the chosen displacements of this
analysis. The n- and {-axes, with the origin at the elastic
axis and the n-axis along the major axis of the cross section,
move with the cross section. The blade deformations are
denoted by a displacement v of the elastic axis in the plane of
rotation, positive when in the direction of rotation, a dis-
placement w out of the plane of rotation, positive upward,
and a rotation ¢ about the elastic axis. The built-in twist 8
and also ¢ are positive when the blade leading edge is up.

The aim of this analysis is to derive the differential equa-
tion of motion in terms of », w, and ¢. The derivation
proceeds along the following steps:

(1) The equatlon for longitudinal strain at any point on the
cross section is derived in terms of the displacements.

(2) With the aid of this strain equation the internal elastic
moments are derived ; these are the resultant moments taken
about the 5- and {-axes and are shown in figure 3 (c).

(8) The transformation is then made of these elastic mo-
ments to the more easily handled moments which have
vectors parallel to the z, ¥, z axes system. (See fig. 3 (c).)

(4) The equilibrium expressions for these latter moments

M,
1 grz M,
Mo M :
2 M,
y 2 S L
dw M,
© dx
(n) Coordinates. (b) Displacements.

(¢) Moments.
Figure 3.—Nomenclature.

are derived, and this conmdera.tnon involves the-introduction
of the total loading on the beam.

(5) The total loadings, composed of the body forces and
applied loadings, are derived.

(6) Steps 3, 4, and 5 are combmed to give the final differ-
ential equations.

DERIVATION OF STRAIN EQUATION

Both longitudinal and shearing strains are, of course, pro-
duced during bending and torsion of the beam. In genersal,
both types of strains must be considered in determining the
resultant forces and moments that act on a given cross
section. In the treatment given in the present paper, how-
ever, an approach is used which requires that only the
longitudinal strains have to be considered explicitly. In
appendix A a derivation akin to an engineering beam theory
is given for the strain that develops in any longitudinal fiber
of a twisted beam .which undergoes translational displace-
ments » and w and a torsional displacement ¢. The deriva-
tion is mainly formal, but a physical insight of how strain is
developed may be gained by considering the possible motions
of the imaginary cutting planes shown in figure 4 and which
are assumed to remain plane during deformation. In
general, strain may arise from four types of motion: pure
displacement of the planes toward or away from each other,
rotation of the planes associated with chordwise bending,
rotation of the planes associated with flapwise bending, and
rotation of the planes relative to one another about the
elastic axis t6 cause beam twisting. With the assumption
that the cross section is symmetrical about the major princi-
pal axis, the resulting longitudinal strain is found to be

e=er+ (e4—n) (v’ cos B+w'/ sin B)+¢ (@'/ sin B—w’’ cos B)+
B+ rP—k'’ @

The longitudinal stresses follow directly from this equation
and are

o=Eler+(ea—n) ("’ cos p+w’’ sin )+’ sin f—

w'’ cos B)+ (P*+71*—ka)B'¢'] @)
.«. ) @
€ = % +("12+;2)_0§ %é
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No further development of cross-sectional stresses or
strains is necessary. The consideration of shearing stresses
which are associated with longitudinal stresses, that is, the
shearing stresses which are necessary to satisfy equilibrium
of an elemental tube, is avoided by choosing the elastic axis
(defined here as the locus of shear centers) as a reference
axis; the consideration of shearing stresses due to twisting
deformation is obviated through use of the assumption that
the resisting torque includes a St. Venant type torsional
term which is the same as would develop if the beam were
initially untwisted. Both of these items will be introduced
in the next section.

DERIVATION OF INTERNAL ELASTIC MOMENTS -

The stress distributions over the cross section may now be
resolved into effective internal resisting moments at the
elastic-axis position, as shown in figures 3 and 5. In order
to determine these moments, the inclination relative to the
elastic axis of the general beam fiber due to initial twist and
twisting deformation must be considered. The stress along
this fiber is resolved into two components, one parallel to
the elastic axis and one in a plane perpendicular to the
elastic axis. (See fig. 5.) From the longitudinal com-
ponent, the flapwise bending moment Af; and the chordwise
bending moment A1, are given as follows: :

/2

My=— . [0 ovdcan ®)
t]2

My—— ﬁ "' med;d,, @

where the minus signs have been introduced to make the

moments positive when they produce compression in the -

upper and nose fibers, respectively.

The component in the plane normal to the elastic axis
leads to an effective torsional resisting moment. The con-
sideration of this component and the addition of the torque
associated with St. Venant twisting mentioned previously
leads to the following equation for total resisting torque:

5, [t f e e
e=aro+ [ [0 olotey aitrIdsd )

where a positive torque is associated with a positive ¢*. In
equation (5), the choice of the elastic axis as a reference
axis is significant. The elastic axis does not necessarily
coincide with the centroidal axis, and if the centroidal axis,
or for that matter any other axis, were used as & reference,
then the shearing stresses associated with longitudinal
stresses would contribute to the total resisting torque.

cdd /172+c2 .‘ifxl?l. /

T 28

Ficurs 5.—Internal elastic moments.

Such a term would have to be included in equation (5) and
would thus lead to considerable complication in the analysis.
With the choice of the elastic axis, however, no such term
appesars, because the elastic axis is defined herein as the
axis about which the resultant torque of the shearing stresses
due to longitudinal stresses is zero.

Since the elastic axis is important, the establishment of
this axis position will-be discussed now. Consider differential
longitudinal stresses to arise which have & cross-sectional
distribution the same as that given by equation (2). The
differential longitudinal stresses associated with the expres-'
sion Eleptes(v’”’ cos B+w' sin g)—kp'¢’] are uniform
across the cross section and hence do mot produce any
shearing stresses. For the expression

El—n(v" cos p+w'’ sin 8)+($*+1*)8'¢']

the differential stresses would be symmetrical about the
major axis (y-axis) and, since the cross section is assumed
symmetrical, would lead to a resultant shear directed along the
major axis. Only the remaining term E¢ (v'/ sin B—w’/ cos B)
can lead to shearing stresses which produce torque.
Thus in order to locate the position of the elastic axis, it is
sufficient to consider the beam in bending about the major
axis only, with a linear stress distribution in the ¢-direction,
and then to determine the shearing stresses over the cross
section (in the 7~ and {-directions) and the position along
the major axis for which these shearing stresses produce no
resultant torque. (See treatments on elastic axis and shear
center in ref. 17.)

The substitution of equation (2) into equations (3), (4),
and (5) gives the following equations for total elastic moments
in terms of the displacements:

M,=FEI,(—v" sin 84w’ cos B) 6)

M,=FEI,(v"’ cos 8-+w'’ gin 8)— Tes—EB;8'¢’ )
Q=[GJ+ Tk +EB\(8)l¢’'+

Tk 8’ —EB:f' (0" cos B+w'’ sin ) (8)

where I, and [; are the principal moments of inertia of the
tensile carrying area (I, is the moment of inertia about the
mean principal axis, not about the f-axis) and where B, and
B, are section constants defined by

Bx=fql' in? (n’-l—%—-h’) dn
‘!;,

B _f’lut ( 2+_t_2.__k 2>d
2= " nn 12 A n

In equations (9) it is interesting to note that if displacements
parallel and perpendicular to the blade chord had been
used instead of » and w the results obtained would differ
from. those used by other investigations. (See appendix A
for the results obtained.) Also of interest is the form that
equation (8) would take if large deflections in ¢ were consid-
ered, but with »=w=0. This point, which is connected
with the possibility of a torsional instability, is discussed
also in appendix A.

©)
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MOMENT TRANSFORMATION

In the consideration of the equilibrium between moments,
shears, and tension, it is more convenient to deal with
moments that are orientated parallel to the z-, y-, and
z-axes, that is, the moments M., Af,, and M, shown in
figure 3. A simple transformation of the moments A,
M;, and @ to these newer moments is thus desired. When
the M;, M,, and @ moments are resolved into components
in the 2-, -, and z-directions, respectively, and use is made
of the relations that when ¢ is small

(10)

sin(8+¢)=sin B+¢ cos 8
cos(f+¢)=cos f—¢ sin 8

the following relations are obtained:

M.=Q+M;(cos B—¢ sin g)v'+
M;(sin B+ ¢ cos B)w’+M;(sin 5+
¢ cos B)o'—M;(cos B—¢ sin Bw’ +~ (11)
M,=DM,(cos f—¢ sin B)+M,(sin 8+ cos B)—@Qv’
M,=—M,(sin B+ ¢ cos B)+2DM;(cos f—¢ sin )+ Qu’

Now when equations (8), (7), and (8) are substituted into
equations (11), and all the second-order terms are dropped,
the following desired equations for M, 3, and M, in terms
of the displacements are found:

ﬂl;= [GJ'l" TkAa-l“EBl(ﬂ’)s]d)'_l_ I'kAzﬁl—EBgﬂl (v”COS B‘l“

caw'’sin B)— Tesv’sin B+ Te w'cos B (12)

M,=(EI, cos?8+EI, sin?B)w’’ 4 (EI,— EI,) sin B cos v’/ —
(Tesa+EBsf'¢’) sin f— Teq cos 8 (13)

M,=(EI,—EI) sin B cos B w’’'+(EI, sin?8-+4EI; cos*B)v’" —
(Tea+EByf’'¢") cos B +Tea sin B (14)

EQUILIBRIUM CONDITIONS

The equilibrium of the forces and moments that act on &

differential beam element is now considered. In this con-
sideration the element is formed by slices parallel to the
yz-plane, because this choice leads to rather simple results.
The forces that act on such an element are shown in figure
6(a); the moments, in figure 6(b).. The quantities p., 7,
Ds, 0z, Gy, and G, are resultant force and moment loadings,
which involve both the acceleration body forces and the
applied aerodynamic loading. The acceleration body forces,

(a) Forces.
Frqurn 6.—Equilibrium of forces and moments.
526597—60——13

(b) Moments.
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due to both centrifugal and transverse accelerations, are
derived in appendix B. -

Summation of the forees in the z-, y-, and z-directions and
summation of the moments about the -, -, and z-axes lead
to the following equilibrium conditions for shear and

moment:
Vi +§:= 0
V) +p,=0 (15)
Vl, +Z—’z=0
My — V' + Vo' +5=0 (162)
M, —Tw'+V,+q,=0 (16b)
M/ — T4+ V,+q,=0 (16c)

By substitution the shears in these equations may be
eliminated to give the following basic equilibrium conditions:

Mz’ —My,v,+Mz,wl_§va+§zw’+§z=o
M) —(Tw'Y +q,/—p,=0 an
M, —(Iv') +q/ —p,=0

Substitution of equations (12), (13), and (14) into equations
(17) gives

—{[GT+- Tk +EBi(8) 1"+ Tk’ —
EB,8' (v cos B+w'’sin )} +
Tev''sin B— Te w'’cos B+G.0"—gaw' —q.=0 (18)
[(ET; cos?*B--EI, sin38)w’’ 4 (EL,—EI,)sin 8 cos 8 v’ —
(Tes+EByB’'¢")sin f— Tesdp cos Bl —
(Tw')' +g'—p.=0 (19)

[(EL;—EI)sin 8 cos B w4 (K1, sin*g+E1, cos?B)v’’ —
(Tes+EByB'¢")cos B4 Tesd sin B}/ —
("Y' +9’—2,=0 (20)

where second-order terms have been dropped. Only the
loadings now remain to be considered.

RESULTANT LOADINGS

As mentioned previously, the resultant or total loadings
are composed of both the inertia loading due to centrifugal
and vibratory accelerations and the applied aerodynamic
loading. The inertia loadings, which consist of the forces
and moments which oppose accelerations of the blade ele-
ments, are derived in appendix B whereas the aerodynamic
loadings L,, L,, and A are left in this symbolic form, since
they are in the nature of externally applied loadings.

The procedure that follows is employed in the derivation
of the total loadings which is given in appendix B. The
acceleration of any mass particle on the vibrating, rotating
blade is derived and the components in the z-, -, and
z-directions are obtained. These component accelerations
include terms for the Coriolis force and transverse and cen-
trifugal accelerations along with higher order terms. The
inertia force and moment loadings are then obtained by in-
tegrating over the cross section; these are simplified by
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dropping second-order terms and are then added with the
&erodyna.nnc or apphed loadings to yield the followmg de-

Do=—"T'=0mz 7
Py=L,—m[p—9*(v-+e,)]+melé sin g+

0%(cos B—¢ sin f)]
By=L,—m(ib+ed cos f)

Ge=M—Q*me[(v+e¢,) sin B+e,¢ cos f]+me(Psin f—
W €08 ) — M (ftms®—~Fen?) (s B cO8 B+ COS 28) —mk 4%

y=—Qmex(gin f-+¢ cos B) ]
G:=—*mex(cos B—¢ sin B) J

- (21)

FINAL DIFFERENTIAL EQUATIONS

The substitution of equations (21) into equations (18),
(19), and (20) gives now the desired final differential equa-
tions of equilibrium

—{[GJ+ Tk +EBy(8)1¢'—EB:g’ (v’ cos g+w'’ sin )} +
Te (v'’ sin B—w’’ cos B)+Q*maxe(—v’ sin B-+w’ cos B)+
Qme sin Bo-+Pm[(kpa®—Ekm?®) cos 28--ee, cos Blo+mkn3d—
me(d sin B—ib cos B)=M-+ (Th?*8’) —m[(km—

km?®) sin B8 cos B¢, sin B] (22)

[(ET, cos? 8+ EI, sin? B)w’’ + (Bl;—
Te,¢ cos f—EB,p ¢’'sin )/ — (Tw') — (Q*mzed cos B)’ 1+ _

EI)sin Bcos v’ —

m (-6 cos B) =L, (Te, sin B)"'+ (Qmze sin §)’ (23)

[(EI,—EI) sin B cos B w''+ (B sin® B+ ET; cos? By’ +
Teud sin B—EB:B'¢’ cos ]’ — (Tv')’ + (@mzes sin )’ -+

Q2mes sin B+ m(P— e sin B)—Pmy=L,+ (Te4 cos 8)’' -+
(Q*mze cos B) Q% (e, +e cos B) (24)

In these equations, the terms that are not included in
previous theories have been underlined. (It should be noted
that ref. 18 suggests the existence of the centrifugal coupling
terms Qmzew’ and (QPmxeg)’ for the case of a blade with
B=0.) Many of these new terms are coupling-type terms
which are associated with the centrifugal forces. A number
of the new terms take the forms of lateral and twisting load-
ings which tend to deflect the blade even in the absence of
externally applied loads; because of this fact they have been

written on the right-hand sides along with the applied loads .

L, L,, and M.
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Importance of coupling forms.—It is beyond the scope of
this paper to make a complete evaluation of the magnitude
of each of the coupling terms and their influence on such
phenomensa as, say, blade vibration. A rough idea of their
importance can be gathered by analyzing each term in detail
and comparing them to other terms of known importance.
As an example, consider (Tes¢ cos 8)’/ in equation (23). I,
for simplicity in the consideration, e, and m are considered
independent of , and if =0, then this term would becomo
on expansion

—Q'mesp+2T" (ead) + T(easp)’”

These terms may now be compared with other terms of
known importance. Thus, if e,¢ is interpreted as a deflection,
then the last two terms of this expansion are seen to be
exactly comparable to the expansion of the well-known and
important term (Tw’)’=T’w 4+ Tw". Also the first term
—PPme, ¢ i8 directly comparable with the coupling term of
established importance in the consideration of coupled
bending-torsion of vibrating beams, namely, o*me¢. A
similar consideration may be given each of the other new
terms in the final equations. The examples to be presented
later will also give an indication of the importance of some
of the terms.

Boundary conditions,—Sinee the problem is, of course, a
boundary-value problem, some mention of the associated
boundary conditions should be made. The most genecral
case involves ten boundary conditions—two conditions
associated with equation (22), and four each for equations
(23) and (24). These conditions all evolve from the type of
constraint that is imposed on the ends of the beam on the
displacements v, w, and ¢, the moments M, and M, (egs.
(13) and (14)), the torque @ (eq. (8)), and the shears V,
and V, which are defined by equations (16b) and (16¢).
For a completely fixed end, the boundary conditions would be

P=W= ¢=vl=w’=0

For a free end, the conditions would be

1 Q:—._My=_M’= V,: V‘=O

In this case, the alternate choice of M;=M;=0 (sec eqgs.
(6) and (7)) may be used instead of M,=M,=0.

For the present system, an end cannot be referred to
simply as pin-ended; care must be taken to specify the num-
ber and directions of pins present. For example, an end
may have a pin which runs parallel to the y-axis but may be
fixed as regards displacements v and ¢. In this example, the
moment M, has been relaxed and the boundary conditions
become

r=w=9v'=¢=M,=0

Other pin-ended conditions follow in a similar fashjon.
Elastically restrained ends may be handled in a manner
similar to that used in the usual treatment of beams, except
that the direction of the restraint must be properly taken
into account.
Subcases of the general theory.—In actual applications,
several special subcases of the present theory are frequently
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encountered. Three of these subcases are déscribed as
follows:

Case It The built-in t.w1st is zero, f=0.
Case II: Bending in two directions without torsmn, ¢=0.
Case III: Torsion only, y=w=0.

The equations of motion which result when the theory is
reduced to these special cases are as follows:
For case I, =0,

—[(GT+Tka?)¢') — Teaw” + Q*maew’ +02m (na'—Fm*+
¢e) ¢+ mbntd-+meiv=M  (25)

(EIw'" — Tesd)"' — (Tw') — (Q'maeg)’ +m(h+-ed)=L, (26)

(EIp'"Y' —(Tv") —*my+mb=L,—
(Tes)"! 4 (@*maze)’ +2°m(e,+e) (27)
For case 11, =0,

[(ET; cos*8+EI, sin*f)w’’ + (EL,—EI)sin B cos 9"}/ —

(Tw'") +miv=L,+(Tes sin )"+ (@*mze sin £)’ (28)

1

185

[(EL,—EIL)sin 8 cos B w4 (BT sin?g-+ EI, cos’B)v’ ']/ —
(Tv"Y —Q¥mp+md =L, (Tey cos B)’ 4 (Q*mxe cos B)’ -+
0®m(e,+e cos B)

For case I, v=w=0, -
—{[GT+TkL+EB:(8)¢' } +m[(kns®—
Fent?) cOS 28+ee, cos flg+mh.3¢
=M+ (Tkp’) — Q3m[(kns*—Fka®) 8in B cos f-¢¢, sin B]  (30)
ASSOCIATED ENERGY EQUATION

As a check on the derivation presented herein, the differ-
ential equations of equilibrium were derived by a completely
different approach that involves energy principles. In this
energy approach the strain energy of deformation, in which
the longitudinal strains were arrived at in a different manner
than that presented herein, and the work performed by all
the forces present were considered. The equation for total
potential energy of the system is, of course, closely allied to
the differential equations and is of intrinsic value in the
treatment of the problem of the present paper from an energy
standpoint. For completeness, the equation is presented
here without derivation. If U denotes the tofal strain
energy and V represents the work performed by the centrifu-
gal body forces and the applied loading, then

(29)

OR{ EI(v" sin —w" cos B)3-+EIL(v” cos f4w” sin 8)*4-[GJ+-EB,(8')(¢')*—2EBa(v” cos B+

wsin )5 Yo [ (P4 310V Y Heu(s 008 B sin f)—eat(” sin f—u” cos B)—k S +E'o | o+

@t { sel—(o' cos B+ sin £)-+4(0’sin 51 c05 B0+ (e 003 e sin B+~ ('~

Jnt?) Sin § 08 B g6, sin Flg— [(ins'—lons) 008 2-Hce, c05 Bw}+p,v+p,w+g¢)dz 3D

where p,, ps, and ¢ are the applied loadings considered in a
static sense. Application of the minimum variational
principles to this expression yields differential equations
which are the same as those given by equations (22), (23),
and (24) when ¢, v, and w are not time dependent. The
variation also gives the boundary conditions on moments,
shears, and torques that are for stipulated geometrical
conditions at the ends of the beam and are given in the section
entitled “Boundary Conditions”. The differential equations
applicable when time dependent motion is considered may
now be obtained by writing the loadings p,, 7., and ¢ as the
sum of the applied loadings and vibratory inertia loads (as
obtained by D’Alembert’s principle); specifically,

py=L,—m(i —es sin £)
P:=L.—m(’lb+ea> co8 ﬁ) (32)
q=M-+me(? sin B—b cos ) —mkd
The substitution of these loadings into the differential equa-

tions obtained by the variational process then gives equa.tlons
identical to equations (22), (23), and (24).

METHOD OF SOLUTION AND EXAMPLES

The general differential equations of this paper cannot be
solved exactly, and it is therefore necessary to resort to some
approximate means. Two means, which differ in manipula-
tions but which yield equivalent results, will be considered
here—one is & modified Galerkin type procedure, the other a
Rayleigh-Ritz procedure.

In the modified Galerkin procedure, the displacements are
assumed to be expressed in finite series of known functions
as follows:”

d=mpt+adt . ..

Ay
w=byw+bsw+ . .. b,‘fw, (33)
v=cint+emt . . . oty

where a,, b., and ¢, are unknown coefficients, which may be
time dependent, and ¢,, w,, and 2, are chosen modal func-
tions which satisfly the geometrical boundary conditions of
the problem. A set of linear simultaneous equations which
allow the evaluation of the unknown coefficients is now
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formed through applicetion of the following equations:

n=12,3,...p)
(348)

R B
J; ¢aD1(¢,w, v)dz+ Q‘Ibn:lo =0

IR woDs(¢,w,v) do:+M,w,,’:|j+V,w,,\ =0 (n=123,...9)
0
(34b)

fR v,Ds (¢, w,0) dx+M, v, | +V,v, IR=0 n=1,2,3,...7
0 0
(84c)

where D;(¢,w,0), D:(¢p,w,0), and Dy(¢,w,w) denote, respec-
tively, equations (22), (23), and (24) with all the right-hand
terms transferred to the left-hand side; @, A, and M, are
given by equations (8), (13), and (14); and V, and V, are
found from equations (16b) and (16¢). For static or other
externally imposed loading conditions, the set of equations
formed by equations (34) will be nonhomogeneous; the
solution for the unknown coefficients and, hence, the displace-
ments then proceeds by ordinary means. For a characteris-
tic-value problem, such as free vibrations, the set of equations
will be homogeneous, and the vanishing determinant will
yield the characteristic frequencies.

This procedure is called a modified Galerkin procedure
because of the presence of the boundary terms in equations
(34). In general, it would be very difficult to choose modal
functions in equations (33) so that both the geometric and
“force’ (shear, moment, torque) boundary conditions are
satisfied, which is necessary in the usual Galerkin approach.
Therefore, the force boundary terms are added in equations
(34), and, thus, the stipulations on the chosen modal func-
tions are relaxed so that only-the geometric conditions need
be satisfied. It should be mentioned that in actual applica-
tions these force boundary conditions do not have to be
evaluated, since they can always be cancelled by integrating
certain of the terms of the integrals by parts. A justifica-
tion of this procedure can be obtained from the Rayleigh-
Ritz procedure. , '

In this Rayleigh-Ritz approach the displacements are
expanded in series as before (see egs. (33)), with the same
requirement on the geometric boundary conditions. These
expansions are substituted into the energy equation (31),
and a minimization is then made with respect to the unknown
coefficients; that is,

___b(g;v) =0 @=12...p |
%;_VLO (=1,2,...0 (35)
9@5;_V)=0 (v=1,2,...7)

The resulting equations will be identical with those of equa-
tions (34). As a matter of fact, equations (35) may be used
to prove the validity of equations (34) (through appropriate
integration by parts) and thus to show that the two proce-

dures outlined. here are really equivalent. Because of the
confusion that often arises about boundary conditions when
the Galerkin process is applied, the safest procedure is to
use the Rayleigh-Ritz approach.

Two examples are now given to show the application of
the two procedures discussed and to show further the
importance of some of the coupling terms.

EXAMPLE I /

In example 1, it is desired to determine the natural fre-
quencies of & rotating cantilever blade having zero initial
twist or blade angle of attack (8=0) and with ¥=0. The
Rayleigh-Ritz procedure will be used. Assume that the
displacements ¢ and w are given as follows:

d=11 2 pa+ 33
(36)

w=byw, + bywa+bsws

where ¢, and w, are the natural uncoupled modes of the
nonrotating beam in torsion and bending, respectively, and
are expressed in terms of & unit tip displacement. Equa-
tions (36) are substituted into equation (31) with v=8=0,
and & minimization is made with respect to a, and b,, and
then use is made of equations (32), with the applied loadings
L,=L,=M=0. The resulting equations are then reduced
as follows. First, the relations which apply to uncoupled
vibrations are used, namely

R
f MWW, dz=0 (m#n) W
0
=M, (m=n)
f * ELw,"w,’ de=0 (mn)
0
R
=w,? f mw3dz (m=mn)
0
="~’12Mn
2 - (3D
f Mk s P padx=0 (m=n)
0
=N, (m=n)
B
f @6, b do=0 (m<n)
0
=anfR m]fma Pa? (m=n)
0
=#32Nu J

where w, and g, are the natural circular frequencies of the
uncoupled bending and torsion modes, respectively. Second,
the constant terms are dropped, since they apply to static
deformation of the blade. And third, motion representative
of simple harmonic motion is considered by setting

An=0, 8iN wl

ba=b, sin «t



The final equations will be homogeneous, and the vanishing of the determinant of the &, and &, coefficients will define the natural coupled rotating
frequencies. This determinant is

(w2 —aD A +4;y Asg A — By—?0, QYD —Bu—?*Oy+ 02Dy ~ Ba—u? (51 02D,
A (e Myt Aon Any —By—ufCig+ 9D —By—uiCyt9Ds  —Ba—Cat 0Dy
Ay Ay (wy2—D) M3+ Ayy — Bry—a? i+ 08D, — By~ Cyy- Q2D —By—w*Cy+ 22Dy,
~Bu~*Cut 0Dy ~Bu—uOn+ @Dy —Bu—o' it 2Dy (1P —)Ni+ Eu-+07Fy Byt 01 EntoF |
—By~atCut+ @Dy ~Bu—o'Cut @Dy —Bu—o?0ut0Ds Byt 0F, (4= Nyt B+ 0Ty Bk 24F,
| —Bu—*Cut @Dy ~Bu—e'Cat@Dn  —Bu—uiC+2Dn Byt 0°Fs By t-0'Fy () Ny Byt 027 |

where the coefficients are
R
' M, ==f MmNz
0
R
S
0
R
Ammf Tao'w, dz
1}
R
Bap= r Teadmtty"dz
Jio
- (88)

R ,
Oﬂ.nﬂf MePnpds )
0 . s

R
= r mred_an dr
MTeh Wy &2

A~ W
0

E-n':fR-TkAIqs‘nqbndI
0

- (B e s
1"...==J0 T (Komy — o1 186y ) B al T

No numerical evalnation of this exnmple is made, but the importance of some of the new coupling terms of the present theory is realized by compar-
ing the sssociated coupling terms which appesr in the determinant. For example, 3*Dy;, which is new, may be compared with «'(h;, & conventional term

of eatablished importance. The frequencies 0! and «? may be of the samae order of magnitude; the factora undar the inteprsl are the same sxcant for . and
n AL RUD, LU0 ARCLLIT AR VIO JOVEAT VALY DialT DAVOR U LVL W ol

oM PLEOUM A PULRSRAUT =0 AT, RRALE o LD B AT VAL VYL

zw,’. Thess may be shown to be of the same order of ma.gmtude, however, and so both coupling terms are comparable in magnitude, This is another
indication, therefore, that the new coupling terms are of significance in the treatment of rotating blades.

P R,
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system may be regarded as having o behavior similar to sn actunl helicopter blade which is heavily loaded along the leanding edges, as depicted in the
lower sketch of figure 7. An approximation to the first two natural frequencies will be found by the modified Galerkin procedure. The differentinl
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Fiqure 7.—Natural frequencies of example 2 showing the importance
of centrifugal-force coupling.

equetions for shear, moment, torque, and tension (eqs. (25),
26), (16), (13), and (8) with f=v=¢,=e¢,=0) applicable
here are

—(QT+TED Y+ Q2 maew’+ 02m (ks —
kemi®)d— i (mew-+mh,*$) =0 (39)
(ELw")"—(Tw') — (Q*mzed)’ —?(maw-+ med) =0
M,=ELw" )
Vi=—(ELw")'+Tw'+Q*mexsd

Q=(GJ+ Tk D¢ . (40)

R
7= f Q*mz do+ QMR

T o
In these equations the mass per unit length m should be
interpreted to apply to both the distributed mass of the
beam and to the concentrated offset mass. This concentrated
mass can be handled, for example, by imagining the mass to
be distributed over an infinitesimal length, say A, with
intensity Af/A, then to perform the integrations of the
Galerkin process as though all quantities involved in the
integrations are uniform in this interval, and finally to
squeeze the interval down to zero length. An equivalent
procedure is to take the concentrated mass into account
through means of the Dirac delta function.

‘With this in mind, equations (39) and (40) are substituted
into equations (34a) and (34b); the terms ¢,(GJ+ Tk D¢’
and w.[—(Tw")’— (Q*mzep)’] are integrated once by parts,
the term w,(ELw'’)’’ is integrated twice by parts, the
boundary terms cancel, and the results are the following
two equations: :

[F@rtmavsat [ [omenr+
Q2 (lens®—Fem®) $— w0 (Mew- M) [$odz=0 (41)
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B R
f E’Ilw”w,,”d:c—l—ﬁ (Tw'+ Q*maed)w,'dv—
0
R
w? f (mw+med)w,dz=0 (42)
0

Approximations to the displacements are now chosen as

dp=a:1$1
- (43)

w=>byw,
where ¢, and w; are the fundamental uncoupled vibration
modes of the beam without the tip mass, in torsion and

bending, respectively, and each is given in terms of a unit
tip displacement; these functions satisfy the equations

EN

- R
f QT ) dr=ps? f mhe b d
[1] 0

J
=p i mhs? g (#1=7§r YV ﬁ )

R R
f ET 1 (’wl”) dx— wlgj; m'wl"d:r,
0

R Bl
—w? 1";— <m1=3.461 /E'R% tJ

where m refers only to the mass per unit length of the beam.
Equations (43) are now substituted into equations (41)

- 4)

~and (42), use is made of equations (44) and the equation

for tension (applicable here) T=% Pm(RP—2?) + 92 MR,

and the integrations are performed with due cognizance
being given the offset tip mass; the values found for the
integrals are as follows:

N
fBG Jprdz= u;’mkm"g
0

fxﬂ’mxewl’ ¢ dr=1.380*Ma

1}

f RQ’m (Foms®—Em®) pridz= Q2N a?
0
R

f mengdr=Ma .
0
. R - (46)

f mlnididr= mk,,,zg—l-Ma’
1]

fREII (wl") ’d:v=w1’mTR
0

ﬁ BT(wl')’d:ch'%(mR+§M>

f Bmwl’da:=@ +-M
° 4
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(The contribution of T%.* is found negligible in the first
integral.) The final equations are given now in nondi-
mensional form

b el L (B ) ok (1an-2) B
[wﬂ 2Ma? 1w12 o\ 20 a? +1 :Iaq-i- 1.38;,- w1’> =0

2 W - mB , Q4 4mRB\ o mB\7b:_
1'382@173) et | T st Tem) o 1 i) | 2 =0
The vanishing of the determinant of these equations will
yield the natural frequencies. Specific evaluation has been
made for the following values:

#12 R?

‘:,~—0.152rm2
and the results are shown in figure 7. Results are shown
for three conditions: (a) for vibration of the beam with
offset mass in pure bending or pure torsion, (b) for vibration
in the conventional coupled sense but with no centrifugal-
force coupling (that is, the underlined terms of the equations
of this example are omiited), and (c) for vibration with
all coupling terms considered (the curves labeled complete
in fig. 7). It may be seen that the inclusion of centrifugal- |
force coupling, which is new in this paper, has a very pro- *
nounced influence on the vibration characteristics. In '
fact, this centrifugal-force coupling seems to be of the same
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general strength as the conventional offset mass coupling
normally considered.

CONCLUDING REMARKS

The differential equations of deformation of a twisted ro-
tating blade under arbitrary loading have been derived.
A special feature of the analysis is the consideration of the
noncoincidence of the tension, mass, and elastic axes, whereby
coupling is allowed to occur in a more general form than
heretofore considered. This theory can therefore be used
to solve problems in which these effects are significant and
to evaluate the less complete theories which perhaps are
more easily applied.

The aerodynamic loading considered was left in general
form. It can be replaced, however, by whatever terms are
appropriate for the case being treated. If these aerodynamic
forces are taken as zero, then the loadings for free vibration
result.

Because of its usefulness, the energy equation for blade
deformation is also presented. Two methods of solution
are discussed: one is & modified Galerkin process which
makes use of the differential equations; the other is a Ray-
leigh-Ritz procedure which makes use of the energy expres-
sion. Two examples are presented which illustrate the
application of both of these procedures.

A discussion of the importance of the new coupling terms
that arise is made and their significance is further brought
out by the examples. The indications are that the centrifu-
gal-force coupling meay be as important as the mass coupling
that is normally considered in beam analysis and therefore
should be included as a regular part in the treatment of
rotating blades.

LaNGLEY ABRONAUTICAL LLABORATORY,
NaTioNAL ApvisoRY COMITTEE FOR AERONATUTICS,
Lanarey Fiewp, Va., October 6, 1956.



APPENDIX A

DERIVATION OF LONGITUDINAL STRAINS

In this appendix the equation is derived for the longi-
tudinal strain that is developed when & twisted beam under-
goes both lateral and twisting deformations. Consider an
imaginary plane to cut through the beam perpendicular to
the elastic axis; the location of a fiber f of the cross section,
both before and after the deformation, may then be given
according to sketches 1 and 2. The z-axis is normal to the
paper and is made coincident with the undeformed position
of the elastic axis. In terms of the distance 5 along the
major axis, the distance { perpendicular to this axis, and
the built-in twist 8, the initial - and z-positions of the fiber

zZ

7 - -
s /
Z
7)
B
5 y
-~Elostic axis
Sketoh 1.
f —
L
7/ ¢ %
B
|
W
1’4
Sketch 2.
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and the rate of change of these positions with respect to
the z are

~ y=rncosB — {sin B
(A1)
z=1nysinp + {cos B
y = —9f sin B — B cos B = —P'z
. , (A2)
2’ =B’ cos B — {B sin g = By

Now consider beam displacements to occur so that the
point of intersection of the elastic axis and the ocutting
plane moves the distances u, v, and w in the directions
of z, ¥, and 2, respectively, and so that the cutting plane
remains perpendicular to the elastic axis and rotates around it
by an angle ¢. Then if the usual small-angle assumptions that
cos(B8 4 ¢) = cosf— ¢sin fand sin(B ¢) == sin B+ ¢ cos B
are made, the new position of the fiber is defined by the
following equations:

xl=a:—|—u—v’(y1—v)—w'(zl—w)
=z -+ p— vy —wz

Y1 =19+ n(cos B — ¢ sin ) — {(sin B + |
pcosf)=0v+y— zd

2 =w-+ n(8inp -+ ¢cospB) + ¢(cos B —
¢sinB) =w-+ z+ yo )

(A3)

and the derivatives of z;, y,, and z with respect to = are
given as follows:

xll =1 + W — v”y + ‘U’ﬂ’z . w”z —-w’ﬁ’y 9
=1 + w — y(ﬂ" + ﬁ'w') _ z(w" . BIDI)

yl' =9 — pfz— B'qu —z¢! =19 —
yB'e — 2(8" + ¢')

a’ =w + 'y — B2 + y¢'=w' +
yB + ¢) — 2’9 : )

The longitudinal strain that is developed in a fiber may
be found from these equations by considering the amount
an elemental fiber of length ds changes in length as a result
of deformation. In terms of the differential components. of
length in the %-, 9-, and z-directions, the final length ds; of a
fiber is given by the following equation:

(A4)

2 = dz® 4+ dy® + dz? (A5)

Thus

B =@ ) ') (46)
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which becomes with the use of equations (A4)

(L) =142 0/ —y @'+ —a@ —o 212228 —
YB b2 )+ B 2B (o' +yd —2'8) (A7)

or

Bi (14 42 (B2 B~y —

QA PIE (48)
Now the analogous equation for the original length ds may
be determined directly from equation (A8) by letting
wu=v=w=¢=0. Thus

&1+ (84 (49)
The tensile strain in the fiber can now be written
s_dsr—ds
T ds
g8y

2 7 r7 7
—_—{ 1+[1+(y’+2’ L [ —yvo' —2w' +

@*+2*)p 1} —1
1 [ ¥ ’7 37

=[WW [ —yo' ' —zw’’ + (y*+2%) 6" ¢'] (A10)

Now with (y?42%)(8")2«1 (say less than 0.03 to 0.04, which
is generally the case), then

e=u' —yv" —zw” 4+ (y* 296’ ¢’ (A11)

Use is now made of equations (A1) in order to express the
strain in terms of the cross-sectional coordinates 7 and { as
follows:

e=u’—n(v" cos B+w” sin B)—{(—v” sin S+
w” cos B)+ (n*+ B¢’
It is convenient now to eliminate the strain component u’;
this is done by making use of the equilibrium condition that
the integral of the longitudinal stress over the cross section
must be equal to the total tension. Thus, with the assump-

tion that the cross section is gymmetrical about the major
principle axis, the following equation applies:

I, 3
T—Enﬁu s[-llz € dg- dﬂ
s 43 . .
=Ef [ —n(’’ cos B+w'/ sin B)—¢(—v'’ sin B+
Ve J-1/2
w'’ cos B)+(n*+)B'¢'ldt dn  (A13)

~

(A12)

520507—60——14
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or
T=E[Auw —Ae, (v’ coé Bt+w'’ sin B)+Akj28'¢'] (Al4)

This equation yields

W oo cos fHu” sin RS (ALD)

If T/EA is denoted by the tensile strain er, then equation
(A15) combined with equation (A12) yields

e=er+(6a—n) (@'’ cos f+w’’ sin ﬁ)"l"
$(" sin B—w’’ cos )+ (' +*—ks)B'¢’
(416)

which is the complete expression for the strain of any fiber in
the cross section.

EXPRESSION FOR,STRAIN IN TERMS OF DISPLACEMENTS IN AND
NORMAL TO THE BLADE CHORD

Because of apparent anomalies that have arisen in the past,
1t is of interest to show the development of the strain in terms
of displacements in and normal to the blade chord. These
displacements have been used by some investigators and are
shown inrelation to the displacements of this paperin sketch 3.

Sketeh 3.

These displacements are related according to the equations

(A17)

v=p, cos f—w, sin B
w=m, sin B-+-w, cos B

\

If two derivatives of these equations are taken, and due care
is given the fact that 8 may vary with =, then the following
combination of these derivatives may be found:

v// cos ﬁ+w,/ Si]l ﬁ=vlll__2ﬁ/w1,_ﬁllw1_(ﬂ’)20l (Als)
—v'’ gin B+w'’ cos f=w,""+28"v,"+ 8" '1,— (B")*w,

If these expressions are now substituted in equation (A16),
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then the equation for strain becomes
e=ert(ea—n)0'’ —26'w" —B""w— ()0} —
St +268"0)" + B "0 — (B ) wil+ (7P +*— k4D B¢
(A19)

The interesting fact to be noted here with respect to »; and
a, is that the strain is not proportional only to the derivatives
v/’ and w,’’, as might first be supposed, but rather to addi-
tional terms which involve the rate of change of initial twist.

This observation has some significance. If the analysis of
this paper had been carried through in terms of displacements
v, and w;, then the moments and all the results would be in
terms of the group of terms appearing on the right-hand side
of equations (A18), and the final result would be in agreement
with the results presented in reference 11. This consideration
indicates that the treatment in reference 1 may be subject to
correction, since the assumption is made in this reference that

the moments are proportional to v’/ and wy’’. Evidently this,

assumption is not valid when the beam has a finite rate of
change of initial twist.

STRAIN WHEN ¢ IS NOT SMALL

The preceding derivation was made on the assumption that
the displacements %, v, w, and ¢ were small, and a linear
equation for strain results. An interesting observation may
be made, however, for the case of y=w=0, but with large dis-
placements in ¢, such that nonlinear effects are present.
Thus, if the derivation is repeated with ¢ considered large,
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and with y=w=0, then equation (A11) would take the form
=+ @+ [ 6 +50)

7 Iy 1 7
—w/+ () [ 845 (A20)
The strain component u’ is now handled as before, and the
equation for strain becomes
=arttito—kd [ FeH5@r| @
This equation may be used to demonstrate the fact pointed
out in reference 19 that pretwisted blades may possess a tor-
sional instability. Thus if use is made of equation (5), and
the stress is based on equation (A21), then the following
equation for internal elastic resisting torque results:

Q=GT8 +ThAE +4)+EB 89+ 567 | ¢+

=GTH Tk +)+05 [+~ 1 +)]
(A22)

Observations similar to those made in reference 19 may be
made about equation (A22) with respect to the possibility of
torsional instability; as a matter of fact, if the net tension
over the cross section is zero, the equation becomes similar
to equation (2) presented and discussed in reference 19.



APPENDIX B

DERIVATION OF ACCELERATIONS AND INERTIA LOADINGS

The purpose of this appendix is to derive the acceleration
of a mass particle of the twisted rotating blade and to
derive the inertia loadings from this acceleration. In
order to do this it is convenient to introduce the fixed X, ¥,
Z coordinate axes system shown in sketch 4. This sketch

Z

Sketch 4.

also shows the rotating , y, z axes system (used in the body
of the report and in appendix A) and the deformed positions
2y, 71, and z; of the mass particle (see eqs. (A3)). The
azimuth position of the rotating system relative to the
fixed-axes system is denoted by Q.

In terms of the unit vectors 7, 7, and %, the vector 7 may be
written

7= (z; cos Qt—y, sin Q)i+ (x, sin Y-y, cos Wi+2k (B1)

Differentiating with respect to time gives the velocity
vector of the mass particle

7= (&, cos Q—Qz, sin Qf—7, sin Qf—Qy; cos Q)i+
(%, sin Qt+-Qz, cos Qt+75 cos Y—Qy, sin W)j+2.&  (B2)

and differentiating once again gives the acceleration

F=[(#:—2) cos QU—Q(z;—Qya) sin Qt— (§,1+94,) sin Qt—
Q173+ 92,) cos Qi+-[(E:—Q¥2) sin QU+Q(%;—Qys) cos Q-
(#2-+94,) cos Qf—Q (Y24 Q) sin Qt)j+ 2.k B3)

The components a., a,, and a, of the acceleration vector in
the 2—, y—, and z—directions may be found from this equation
by letting t=0, thus

= (51—92271—29’!72)?:4‘ (gx—ﬂzya'l'mi?l.)j'l‘ 2,k
=asi+ayj+ak (B4)

Use is now made of equations (A3) and the fact that
Ya=Y1+¢,. Thus,

1]

n=2t+u—ov'y—w'z
Yo=v+y—2zéte,
z=w+t+2z+y¢

The first two derivatives with respect to time are given as
follows:

E=u—v'y—w'e

Ya=0—2z (B5)
sy =w-tyd

E=1—b'y—iv'z

Pa=0—29 (B6)
2, =+yd

Substitution of these equations into equation (B4) yields the
desired acceleration vector, with the following components
in the 2—, ¥, and z—directions:

a:=TU—p'y—ib’ 2— P (x+u—v'y—w'2) —2Q(h—29)
ay=0—2¢—P(v+y—2¢1-¢,) +2Q(U—"y—w'z)
a,=w-+yé

(B7)

By substitution of the expressions (Al) for ¥ and z, the
accelerations of the particle are obtained as follows in terms
of the coordinates of the cross-section ¢ and 7:

a,=1—(x+u) —2Q0-+9[—9 cos f—ib’ sin S+
Q%" cos p+w’ sin B)+-2Q¢ sin B]-4-¢[F’ sin f—
' cos B4+QX(—v" sin B4w’ cos B)4-2Q¢ cos f]
ay=0—0*(v-+¢,) +-2Qi+n[—¢ sin f—Q*(cos f—
¢ sin B)+
2Q(—v" cos B—w’ sin B)]+{[— cos B—
@ (—sin B—¢ cos 8)+2Q(»’ sin f—u’ cos )]

a,=1--n$ cos f—{Psin B J
193

(B8)
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The inertie loadings on the beam may now be derived
from these acceleration equations by appropriate integrations
over the cross section. The total or resultant loadings
desired in the analysis given in the body of this paper are the
sum of the inertia loadings and the applied loadings, and are
given by the following equations, when the assumption is
made that the cross section is symmetrical about the major
principal axis:

— ’lo s
fm— [ aparay
B U2

— vlo 2
Pu=I~—f f ayp di dy
Tie -2

- %, t/2
.'p:=Ls—f f a,p di dn
n. J—1/2

-4 . (2 _ _ . .
G.=M f " f_m[ ay(2—0) - asyi—n)]o & dn

- (B9)

— ° l710 2
=" el an
e v —1/2

- qlo t/s
Fome— f f [—a(yi—0)]p i do
Ue V) —1/2

o7

where p is the density of the structural material and may be
o, function of ¢ and 9. If the integrations are performed
with the use of equations (BS), the following loadings are
found:

De=—m[i—P(z+y) —2Q0] —me[—5" cos B—
W’ gin B+9¥ (0’ cos B+w’ sin B) +2Q¢ sin £]
(B10)
Py=L,—m[6—Q*(v+e,) +2Qut] —me[— & sin f—
Q*(cos f—¢ sin B)+-29(—9’ cos —a’ sin B)]
(B11)
Poe=L,—m(ib)—med cos B B12)
T=M—0'me[(v+-¢,) sin B+e.¢ cos ]-+me( sin f—
% cos f+29u sin B) —Qm[(kms*—km® sin B cos B+ (kmd®—
ke®) ¢ cos 28] — dmkyi—20m (knd—Em®)9’ cos 8 sin —
20m (kms® 8in® f+-km® cos® B)’
(B13)

- Ge=—0mex(cos f—¢sin £) /
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Gy=—0me[(z+u) sin B-+z¢ cos Bl-+me(d sin f—
209 sin B) +m[(kns®—km®)?’ sin B cos 4 (kns® sin® p--
kmi® c0s® BYW ] —m(Fmi—km®) D’ sin B cos B
' M(lems® 8I0% B+Km® cos? B) (2Q¢—10")
(B14)

Ge=—0me[(z+u) cos B—z¢ sin S]-+mel(i cos S—
2900 cos B) +Pm[(kns*—km®)w’ 8in B cos B4 (kms® cos? S+
kgi® sin? B)0"]—m (kg —kemi®) %" sin B c0s B—~m (kma® cos® B4~

o® 87 B) %' +20m (ks —Iema™) ¢ 8in B cos B

(B15)

Equations (B10) to (B15) give the general expressions for

the loadings and contain many terms of second order which
for most engineering purposes can be neglected. In equation
(B10), for example, all other terms are small in comparison
to mQ%;, which is the conventional expression for 7. (note
that P,=—7T"); for most practical purposes these small
terms may therefore be neglected. For any specific appli-
cation, however, particularly in the case of unusual configura-~
tions, the relative magnitude and importance of the terms
should be determined. In the case of conventional helicopter
or propeller blades, it is believed that the following first-order
reductions of equations (B10) to (B15) are suitable for most
engineering applications:

Do=—T"=mQ% h

Dy=L,—m[p—Q*(v+e,)]+me[¢ sin B+

2*(cos f~—¢ sin f)]

Bs=L,—m(ib+ed cos f)

G=M—Q*me[(v+e¢,) sin S+e,¢ cos ]+

me(? sin B—1ib cos B)— Q*m (kp®—
ki) (8in B cos B+¢ cos 28) —mk,*d
G=—Q*mex(sin 44 cos B)

(B16)

where

km2=kn22+km12
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